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Solution of diffusion limited aggregation in a narrow cylindrical geometry

Boaz Kol and Amnon Aharony
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University,
69978 Ramat Aviv, Israel
(Received 9 February 1998; revised manuscript received 11 Jung 1998

The diffusion limited aggregation modé&DLA) and the more general dielectric breakdown md@BM)
are solved exactly in a two-dimensional cylindrical geometry with periodic boundary conditions of width 2.
Our approach follows the exact evolution of the growing interface, using the evolution rEatvisich is a
temporal transfer matrix. The eigenvector of this matrix with an eigenvalue of 1 represents the system’s steady
state. This yields an estimate of the fractal dimension for DLA, which is in good agreement with simulations.
The same technique is used to calculate the fractal dimension for various valuegrdhe more general
DBM. Our exact results are very close to the approximate results found by the fixed scale transformation
approach[S1063-651X98)05010-1

PACS numbeps): 61.43.Hv, 05.20-y, 02.50—r

I. INTRODUCTION as the growth proceeds. However, in the Appendix we

e . present a detailed solution of the case of a constant potential
The problem of diffusion limited aggregatidDLA) [1] on the distant boundary, which is set at a finite distance, and

has been a subject of extensive research for the past dec w that the difference between the two boundary condi-
and a half. This model produces highly ramified and nonigns is exponentially small, and thus negligible. After solv-
smooth patterns that seem to be fra¢@l These patterns g the discrete Lapiace equatiéhl) we use the fieldp to
have a great resemblance to those that are formed in magétermine the manner in which the cluster continues to grow.
natural growth phenomena, such as viscous fingef8ig  The growth process is stochastic and the growth probabilities
dielectric breakdowr{4], and many more. A good under- per perimeter bond are determined by the local values of the
standing of the DLA model should help us to explain theelectric field, equal to the potential difference across each
essential physics of these processes. bond, i.e., to the potential value at the sites lying across the
perimeter bonds:

A. A short description of the model |Dy|7
b

In DLA there is a seed cluster of particles fixed some- Pp=——"7". (1.2
where; a particle is then released at a distance from it. This > D)7
particle diffuses until it attempts to penetrate the fixed clus- b

ter, in which case it gets stuck and the next particle is reygre b is the bond index and is a parameter. One of the
leased. In this way the cluster grows. Simulations haveyerimeter bonds is chosen randomly according to the distri-
shown that DLA clusters form fractal branches. It has beerpution in Eq.(1.2) and the site across it is occupied. The
shown that DLA is equivalent to the dielectric bl’eakdOWI’]growth continues by resolving the Laplace equatiar),
model (DBM) with »=1 [4,5]. This paper analyzes the etc. Notice that the boundary conditions have changed a bit
DBM. The DBM is a cellular automaton that is defined on abecause the potential on the newly occupied site is set to zero
lattice. It consists of the following steps: one starts with athis time. This growth model manufactures fractal clusters
seed cluster of connected sites and with a boundary surfasgithout the need to fine tune any parameter and thus differs
far away from it. A field®, which corresponds to the elec- from ordinary critical phenomena and belongs to the class of
trostatic potential, is found by solving the discrete Laplaceself-organized criticalitSOQ [6]. The DBM can be grown
equation on a lattice, in different geometries. By geometry we refer to the dimen-
sionality of the lattice, to the shapes of the boundaries, and to
V0 =0. (1. the details of the seed for growthsually a point or a line for
two-dimensional growth For instance, the case in which the
It is believed that the Laplace equation plays a crucial role irdistant boundary is a sphere is called radial boundary condi-
producing fractals in many physical cases, because it has rtions, and the case in which the boundary is a distant plane at
length scale and because of its long-range screening qualike top, while the seed cluster is a parallel plane at the bot-
ties. These growth processes are called Lapld@ai2. In  tom with periodic boundary conditions on the sides, is called
order to solve this equation, the boundary conditions must beylindrical boundary conditions.
specified. The aggregate is considered to have a constant There has been considerable work on simulating DLA and
potential that is usually set to zero. The potential gradient omeasuring its fractal dimension. The accepted value for the
the distant boundary is set to 1 in some arbitrary u@@tsne fractal dimension iD=1.715[7] for circular DLA in two
use a constant field on the distant boundary ingtdadthis  dimensiong2D) andD = 1.66 for infinitely wide cylindrical
paper we set the distant boundary at infinity, because we dDLA [8]. More details and references on numerical analysis
not wish to consider the effect of approaching the boundargould be found elsewhefd2]. A summary of values of the
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TABLE I. A summary of our results vs the FST results and

results obtained from simulations.
\)

Method Fractal dimensiob Ref. \
Our scheme 1.5538 Present @ == ==== N § ------
2Xoo simulation 1.554 Present k+1 \ C
FST closed scheme 1.55 [10] 1
FST with o s Q

empty configurations k \\ C )
closgd sphemt_a 1.4655 (s - A O
Radial simulation 1.715 [7,12] \\§§
Cylindrical simulation 1.60-66 [8,12]
fractal dimension, obtained by simulations and by theoretical
approaches discussed in this paper, appears in Table I. ;\\\

B. The fixed scale transformation approach to DBM

C]_ (k+1) Ml,l Mz'l
(Cz) T M My,

A novel approach to the DBM, called the fixed scale g, 2. The conditional probability of having a configuratiop

transformation(FST), was introduced by Pietroneret al.  ahove a configuratior€; is the FST matrix elemend; ;. This

with considerable succe¢9-12. Because our work was figure shows &, configuration at théth row. The probability for

motivated and inspired by FST, we include a short descriphaving aC, configuration right above it it 21

tion of this approach, which is close in spirit to the real-space

renormalization groupRSRG, but yet very different. While (K)

the RSRG transformation changes the scale, the FST keeps (Cl) (1.4)

the same scale while moving in the growth direction in real C, - |

space. FST analyzes the statistics of the frozen structure,

which is far behind the growing front. This region is called The matrix elemenM; ; represents the conditional probabil-

frozen because it has very low growth probabilities due tqty of having a Conﬁgljratio@ at the (+ 1)th row, provided

the screening of the Laplace equation. The FST actually angnere is a configuration at thekth row, right below it; see

lyzes a cross section perpendicular to the growth directiongig 2 The fixed point of this transformation represents the

The most simple case studied by FST is that of the twozsymptotic limit for the probabilitiesC* and C3. In this

dimensional cylindrical geometfyi0,12. In 2D the sites on asymptotic limit, the average number of sites in each row is

the cross section are gathered into pairs. A nonempty pal ny=C* +2C% =1+ C% . For a self-similar fractal structure

can have either one or two occupied sites. The probabilitiegne ex;l)ects tzhat a chzange of scale by a factor 2 will chahge

for these two cases are denoted@yandC,, respectively; o average mass of a linear cut by a factBr 2, whereD

see Fig. 1. Then we have is the fractal dimensionality of the full 2D fractal. Assuming
C,+C,=1. (1.3 that the above procgdure represents a coarse graining of the

sites into cells of width 2, Pietroneret al. thus concluded

In FST one calculates the conditional probabilities of havingthat<n)=2D71, ie.,
one configuration follow another in the growth direction. . . .
These probabilities make up the FST matrix: In({n)) In(CT +2C3) In(1+C3)
D=1+ = =1+ .
, , In(2) In(2) In(2)
\ \ (1.5
Ci . . .
N N To calculate the FST matrix, one must consider all possible
growth processes, taking account of the boundary conditions.
, , Pietroneroet al. computed the probabilities using different
X N " ”
schemes.” Here we follow one scheme, referred to as
2 “closed”: it is periodic with a period of two sites, i.e., the
N N\ structure is divided into columns, two sites wide, which are
all identical. In order to calculate the eleméwt, ;, Pietron-
eroet al. set thekth row to be aC, configuration. Then they
The empty configuration considered all possible growth processes that resulted in a
(ignored) configurationC, at the +1)th row, and added them up

with the corresponding statistical weights. These statistical
FIG. 1. Possible occupations of two adjacent sites on an interweights were determined by multiplying the probabilities for
section of a DBM structure that is perpendicular to the growththe successive growths. A similar procedure was done for the
direction. These configurations have probabilit@s and C, as  rest of the matrix elements, with the resulting fractal dimen-
shown. sion of D=1.55. Further enhancements of FST were
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FIG. 3. The coordinatesn{,n) describe the location on a latticé | ypjace equation in 2D. The solid line shows the discrete relation

that is two sites wide. The gray sites belong to the interface of th%inh(x/2)= +sin(/2), and the dashed line shows the continuous
aggregate, which is shaped as a step whose sige is relation k= = k.

achieved by including empty configurations3] and by specific interface shape. We consider all the possible shapes

working with the scale invariant growth rulgs4]. FST also that the interface can assume, and for each possible shape we

works well in 3D[15]. ) o
FST is not exact, because not all possibilities are taker%’OIVe the Laplace equation. In the case of periodic boundary

. ; ; onditions with period 2 the characterization is simple: A
into account. For example, in the calculation of the element. . :

. . ; single parameter characterizes all the possible shapes that the
M, ,, Pietroneroet al. assume that there is@; configura-

tion at thekth row, but they do not consider what happens'.merface can have. This parameter, which we denotedry

below it. This is equivalent to assuming that there i€ i, is the height difference between the two columns, which
S . : . : . we will call “the step size.” This parameter is explained in
configuration right below it, whereas in reality there mlghtFig 3. In the situation where the two columns are of the
e a few consecuiives rows. In the calculation of the ele- same height, it is obvious that the growth probabilties are
whereasz'izn rea)llit atuthe time tha rlwi f Irn? d thvr I’equal for both sides. Therefore we can assume that the
may be a fewC, ryc;ws above it Mo%ovoer tsheoevaeluatice)neof growth will always be on the same side in such an event, for

the elements is done by summing over a finite number o. stance on the right side. This means that the step size can
th h y id ”g hould ~always be considered as non-negative.
growtnh processes, whereas iaeally, one should Sum overin- e gt by solving the Laplace equati¢hl) (the elec-

finite 9F°Wth Processes. Itis also hard to _evaluate the error iﬂostatic problemfor each possible interfac&ec. I)). First
the various quant|t_|es, €.g., the FST matrix eleméfis and we present a general derivation in 2D with periodic lateral
the fractal dimensiom. boundary conditiongwith a general widthy then we solve
for ® in our special geometry of width 2the “closed”
schemg We do it by dividing the plane into two parts: the
In this paper we solve the DBM in the geometry referredupper part, which is empty, and the lower part, which con-
to by Pietronercet al. as “closed,” i.e., in a 2D column that tains the structure. We match up the two solutions by writing
is very tall but only two sites wide, with periodic lateral down the explicit equation for the site common to both parts.
boundary conditions. Each nonempty row can be eith@; a From the potential we get the growth probabilities according
or aC, configuration. Our solution gives the exact probabili- to Eq. (1.2). In Sec. lll we arrange them in a matrix, which
ties for C; and C,, but not through the FST approach. In we call the evolution matrix, which functions as a temporal
spite of this, we get very similar results, which validate thosetransfer matrix for this problem. This matrix is infinite, but
of Pietroneroet al. The differences between our results andthe matrix elementg; ; decay exponentially for large We
those obtained with FST are summarized in Table | for thghen calculate the steady state that is the fixed point of the
casen=1. Our approach is different from FST, because weevolution matrix. In Sec. IV we use the evolution matrix and
use the interface rather than single rows in the frozen aredhe steady state in order to calculate the average density of
We focus our attention on the interface because it determingbe aggregate, and therefore also the probab@ifyand the
the solution of the Laplace equati¢h1). The solution to the fractal dimension. We continue by analyzing the frozen
equation is totally unaffected by what happens behind thétructure below the growing interface. We observe that the
interface, i.e., by the rest of the structure. The solution alsdrozen structure is made of a series of elements, which we
does not depend on the history of the growth that led to the€all “hooks,” and we calculate the statistics of their appear-

C. Overview
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ance. By doing so, we fully characterize the structure. We==*k(k)==«(2#/N) with 1=0,1,...N—1. The casek,
carry out the same procedure for a few different valueg of =0 is special, because there is apparently only one solution
in the more general DBM. We summarize in Sec. V. Thewith x;=0, namely

Appendix presents the solution in the case of constant

boundary conditions at the top instead of constant gradient. ¢o(m,n)=e°m“°”= 1. (2.6)
Il. THE SOLUTION OF THE ELECTROSTATIC The second solution is obtained by considering the limit
PROBLEM +rkm+ikn _ e km+ikn
A. A derivation for a cylinder of arbitrary width Po(m,n)=lim P
in two dimensions kik—=0
+ik
1. The basis solutions and the dispersion relation _ ge" ™ in -m 2.7)
Before solving the Laplace equation for our special geom- IK k=0

etry, we present a derivation that applies to general systems . .

with periodic boundary conditions in 2D. We look at a rect- | N€ rest of the Ri—2 basis solutions are

angle,M + 1 sites high and\ sites wide, with lateral period- e mtikn =1 1

icity. The Laplace equation is satisfied by every site in this ¢i(m,n)=e o 1=1...N=1,

rectangle. This is the situation in those parts in space that are

unoccupied by the aggregate. First, we find a set of basis

functions that span the linear space of solutions. These basis ) N

functions obey the discrete Laplace equation and have lateral ~ 2- The solution to the boundary conditions problem

periodicity, but do not obey the boundary conditions on the and the Green function

upper and lower boundaries. We formulate the latter bound- The boundary conditions at the top row are that the gra-

ary conditions and find the solution that obeys them by finddient (difference is uniform and equal to 1 in some arbitrary

ing the right constants for the linear combination of the basisnits:

functions. In this process the boundary Green function will

emerge. d(M,n)—d(M—-1n)=1, n=0,...N-1. (2.9
The discrete Laplace equation in 2D is

y(mn)y=eramikin =1 N-1. (2.8

This condition corresponds to a uniform flux of incoming

{{®(mn+1)=®(m,n)]-[®(m,n)—d(m,n—-1)]} particles[1]. At the bottom the potential is
Hle(m+1n)=o(mn)] ®(0n)=f(n), n=0,...N—1, (2.10
—[®(m,n)—d(m-1,n)]}=0. (2.1

wheref(n) is an arbitrary function. We define
Inserting an exponential solution,

S®(m,n)=d(m,n)—m. (2.1)
d(m,n)=exm+ikn (2.2
o®(m,n) also solves the discrete Laplace equation, but it
Eq. (2.1) yields the dispersion relation obeys different boundary conditions. At the top it has zero
) _ gradient, and at the bottom it is the sameda@n,n). A set
Sink?( «/2) =sir(k/2) (2.3} of N linearly independent functions that obey the boundary

) ) conditions at the top and the discrete Laplace equation are
= (k)= +2 sinh *(sin(k/2))

~ coslk(M—1/2—m)) .
=In(g=Jg*-1), 2.4 - ikn = _
n(g+vVg —1) (2.9 O coshm(M=172) & =0,...N—1.
where g=2-cosk). This reduces to the linear dispersion (2.12

relation for the continuous Laplace equatia® =k, in the -

limit where the lattice constant is much smaller than theWWe now take the limitM — o, and observe thap,— ¢, (Pi-
potential “wave length”:\=2x/k> 1. The relations for the etroneroet al. usedM =2 in their calculations in Re{.10]).
discrete and continuous cases are shown in Fig. 4. The disd the Appendix we present the solution to the case of a
crete case introduces an upper cutoff on the absolute value 6Pnstant potential at the distant boundary, which is kept at a

K, finite distanceM. We show that the difference in the Green
function for N=2 is exponentially small and negligible

k(K= 1) = Kmax= 2 sinh"1(sin(7/2)) whenM—oo. We have thus discarded of our basis solu-

tions, which we denoted by, (m,n), 1=0,...N—1. The
=In(3+/8)=1.7627.. .. (2.9 remainingN basis functions obey an orthogonality condition

. . at the bottom boundary:
The maximum corresponds to the shortest possible wave-

length, i.e., two sites. For a peridd, the periodic boundary N-1
conditions require thae'*N=1, hencek,=2l/N with | E e (0N ) (0N )=N§ . (2.13
=0,1,...N—1. For eachk we have two possible’s: «, n’'=0 '
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N 1

Gp(n’;m,n)=— Z e *Mcogk;(n—n’)). (2.19

The growth probabilities will be determined by the potential
values near the interface, so only the rows-0 andm=1
will be of importance to us. In this formulation, the raw
=0 is known, so we are really only interested in the row
m=1, which will be determined bys\(0;1,n). We there-
fore denote

FIG. 5. Possible growth processes that change the interface froBefore proceeding we note that

an initial step sizg =3 to a final sizd =4,0,1,2. The growth prob-
ability is determined by the potential and the number of bonds

associated with the site where growth is to occur.

The solution will be a linear combination of these basis so-

lutions:
N—-1
sb(mn)= 2 xg(mn), (2.14
wherex,;, 1=0,...N—1 areN complex scalars. The or-

thogonality condition(2.13 implies that

N—-1
Nx,= 2 ¢i(0n")sd(0n’), (2.19
n"=0
and therefore
N—1
1
PR(MM= 2 el OnIfn)er(mn)
=0
= E f(n)Gn(n'"sm,n), (216
n'=0
where we introduce the boundary Green function:
Nt
Gn(n';m,n)= E ¢f (0n") @ (m,n)
1n
NE elki(n— n’ e xm (2.17)

Being a linear combination of basis functior,(n’;m,n)
also obeys the discrete Laplace equation. When«, the

function has zero gradient, and at the bottom boundary it

obeys

Gn(n';0n) =6, . (2.18

N—-1
IN(M=Gn(0;1n)=T 2, e “icogkn),
=0,...N—1. (2.20
N1 N-1 N-1
3 gn(m= 2 ¢5(LMGN(0;1n)= 3 <=1.
n=0 n=0 i=o
2.21)

The final expression for the solution in a cylinder of width

N—1
®(1n)=1+56P(1n)=1+ > gn(In—n’@(On").

n'=0
(2.22

B. Solution of the electrostatic problem with period 2

We now turn to solve fofb in our geometry(Fig. 3). We
note again that all of the structure below the interface has no
effect on the solution fofb, and hence does not change the
growth probabilities. As mentioned earlier, the interface has
the shape of a step whose height is variable. The conditions
for the derivation of Sec. Il A are not fulfilled now because
the set of sites that obey the discrete Laplace equation do not
form a rectangle. We therefore solve the problem by dissect-
ing the plane into two parts; the upper part witiz 0, which
is empty, and the lower part witin<0, which contains the
aggregate. First, we solve the Laplace equatihm) for the
upper and the lower parts separately, expressing them in
terms of the potential at the connecting sdg,0,0), which
is denoted by. Then we write the explicit Laplace equation
for the site (0,0) to patch the two parts together.

1. The upper part solution

The upper parm=0 is rectangular with lateral periodic-
ity with N=2 and with gradient 1 fom—~, so we apply
the general derivation of Sec. Il A. We hake=0,7 and
=0,kmax for 1=0,1, respectively. We calculate the values
of the Green function using Eq2.20 and Eq.(2.21):

The fact that the specified boundary conditions are real and

symmetric with respect ton=n’
Gpn(n';m,n) is real and symmetric, i.e.,

also means that

l+e “max 143-
g,(0)= e2 5 (—2 V2, (2.23
92(1)=1-g,(0)=+2-1. (2.24
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The conditions at the lower boundary abg0,n)=y,0 for D on(M,0)=u e “M+u,esm, (2.30
n=0,1, respectively, wherg=®(0,0) is yet to be deter-

mined. We obtain the solution for the upper part by using Eqwhere the coefficientss; and u, are determined by the
(2.22: boundary conditions:

D (1,0=1+ygy(0)=1+(2-2)y,  (2.25 (0,0 =y,
(1Y =1+ygy(1)=1+(y2-1y.  (2.26 ®(—j.0=0, (2.31

2. The | t soluti . .
€ lower part solution and the solution is

Here we have to solve the potential inside the “fjord,”
which is one site wide angl sites deegFig. 3). Since both sinh(x;(m+j))
sides of the “fjord” belong to the structure, witlh =0, the Do(MO)=y——————=ye —
equation for the potential in the lower part is sinhx} ) 1-e o

1— e—ZKf(m+j)
m

4¢)Iow(mvo):(blow(m_ 1,O)+<I>|0W(m+1,0). (2-27) m= —j, ...,0. (2.32)

Substituting a solution of the forid®,,,(m,0)=e*™, we find

that 3. The solution for y=®(0,0)

We have expressed the potential for all the sites as a func-
sinh( k¢/2) = = 1/\2= * sin( 7/4), (2.28  tion of y. The value fory is obtained from the Laplace
. . . equation for (0,0),
with the positive solution

Ky = k(k=m/2) =2 sinh }(1/2) 4y=®(-1,0+P(1,0
sinh(k¢(j —1))

=In(2++3)=1.3170.... 2.2 =y—— - 7 -

(2+13) (2.29 Y e FLT2 2y, (2.33
The solution will be a linear combination of the two solu-

tions: We can simplify this a bit by expanding the term

sinh («4(j — 1)) = cosh x¢)sinh( k] ) — sinh( k) cosh k¢j) = 2 sint k¢j) — V'3 costix;j)

sinh(k;(j—1)) el e 2l
sty 2 e 22 230
|
yielding . sinh(k¢(m+]))
q)j(m,o)—Y(J)W
e*ZKfj -1 1—872’(”— 1_e_2Kf(j+m)
P — _ — Kgm —
y(i)=| V2+ ﬁ+2ﬁ—l_e,2m y(w)—lwe,zm, y()e ez ™ i,....0.
(2.35 (2.37)

where we denotey()=y3—2=0.3178. .. andB=5  The supscripj denotes the step size. The potential is speci-
N V24= 0.10D.... Theonly parameter on which the solu- e only for sites that are nearest neighbors to the aggregate,
tion depends is the step size The dependence gnis not 5.4 thus candidates for growth.
strong; already foj =4 the solution is almost identical to the
solution forj =o.

We conclude this section with a summary of the solution

on the external boundary of the cluster: . THE EVOLUTION MATRIX

AND THE STEADY STATE
A. The evolution matrix E

— @2«
1-e ™™ : We now proceed to calculate the growth probabilities.
1+ Be 2’ Growth can be considered as a process in which we start

(2.36  with a step of sizg and end up with a step of side with

®;(1,)=1+0(1)y(j)=1+0(1)y(»)
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conditional probabilityE; ; (note the different notation, com- column. The transitions are explained in Fig.|5.; depends
pared to Pietroneret af's M ;). The new step sizemay be  on the potential at the relevant site, which we denoté& by,
either equal tg +1 (by a growth process in the same col- for which we can write explicit expressions using the final
umn), or smaller tharj (by a growth process in the adjacent results of the preceding section:

r D (—i O)=y(oo)e*"f‘Lw Osisj—l\
e 1+ Be =2« '
T - teaye e e [T oL
1+ pe~ 2~
\ 0 otherwise )
|
In the casg =0 there are two possible growth processes, in o
sites (1,0) and (1,1), but both of them result in a final state Sj(n)=i20 BiF, 1=0,...% (3.9

with j=1. The potential at these two sites is equal to 1,

hence Fl,0:1 and Fi10=0 for i#1. We note that each as the normalization factor.

growth process has a different number of bonds associated From now until Sec. IV C we only deal with the cage
with it: The growth upwards has one bond, whereas all the- 1 which corresponds to DLA. In this case, the evaluation
side growths have two bondslue to the periodic bound-  of g () becomes simple, since we can use Gauss’ law. The

aries, except for the growth at the bottom site, which hascqntinuous version of the law,dVVv2®=$dAV,,®, trans-
three bonds. This is manifested in the bond matrix elemeniyrms into

B;,;, which is equal to the number of bonds associated with

afgr_owlth process that transforms a step of §izato a step S v S AD 3.5
or sizel, bulk sites interface bonds
1, i=j+1 in the discrete case. In our case the term on the left is equal
2 O<i<j-2 to zero. The term on the right includes contributions from the
Bi= ' . =1 (3.2  top and bottom boundaries only. The sum over the sides
3, i=j—-1 cancels because of the periodicity. The boundary conditions
0 otherwise at the top require that the gradient®fis 1, so the sum over

the top equaldN=2. Thus, the sum over the bottom bound-
For j=0 there are two bonddeading to different sitgshat  ary is equal to— 2, but it is also equal to minus the normal-
“grow” to the state j=1, henceB,,=2 andB; =0 for ization factor, hence
i # 1. The growth probabilities are computed using Bqg2):

o

BLFY S(n=1)=2, BjFi;=2, j=0,..%». (3.6
Ei,j(ﬂ)zw, i,j=0,...¢, 3.3 =0
: This enables us to write explicit expressions for the growth
where we denote probabilities:
|
( 1—e2xi(i—1) )
w)e K — o=<i=<j-2
yee) 1+ Be 2«
3 . —e 2K
—y()e K- — — i=j—1
£, = 2 Y(*) 1+ e 2~ V=1, 3.7
e—ZKfj
—ag— i=j+1
E°°+1*°° 1 a1+,8972Kfj ! J
\ 0 otherwise )

where

Ewt1.=lIMEj,1;=[1+g,(1)y(>)]/2=0.5658.. .. (3.9

J—>
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and a=(1+8)g(1)y(*)/(2E.+1.)=0.128L ... For j
=0, the interface will transform into a step of sige 1 with Pi(t+1)=2 E;P;(1), (3.12
probability 1, hencé, o=1 andE; ,=0 fori+ 1. The values !
of E; ; are shown here for €i,j<4, up to the fourth deci-
mal digit:
or in matrix notation,

0 0.4393 0.3160 0.3177 0.3178-- P(t+1)=EP(1). (3.13
1 0 0.1185 0.0847 0.0851
0 0.5607 0 0.0318 0.0227
E= .
0 0 0.5655 0 0.0085 Equation(3.13 also shows that the matri functions as a
0 0 0 0.5658 0 tr_an_sfer ma_tri>_< and justi_fie_s the name “e\((_)lu_tion matrix.’_’ A
similar statistical description of nonequilibrium dynamical
| e systems was already given by Vespignanal.[16]. A state

3.9 of particular interest is the steady state, which satisfies

Let us examine some additional features of the matrix.
The normalization requires that the sum of the elements in P*=EP*. (3.14
each column be equal to £;_,E; ;=1 forj=0,...%. No-
tice that the main diagonal is zero. This occurs because there
is no chance of staying with the same step size after a growtn can be shown that if such a state exists it must be attrac-
Process. Th_e first diagonal below the main, which representﬁve’ i.e., it is reached from any initial vect®(0). Specifi-
the probability for the step to grow larger by .., ; grows ally, the differenceP(t) — P* decays exponentially for large

just a bit as we go down, approaching an asymptotic value of. the absolute value of all the ei
— i , ; genvaluesbofnust be less
E.:.1,,~0.5658 exponentially, as the third row of EG.7) than or equal to 1. This is becaukeis a matrix of condi-

indicates. The diagonal above the main represents the prOlabnal probabilities, i.e., it transforms a probability vector

abilities for growths at the bottqm of the step,_y,, an_q into a probability vector. If there was an eigenvalue whose
qorresponds to the gecond row in &8.7). These probabili- . absolute value was greater than 1, then after a few iterations
ties dec_ay expo_nentlally as the step grows deeper. Accordlnlg(t) would either contain negative elements or elements
to the f.'rSt row in EQ,'(3'7)’ thg elements; converge e)f' greater than 1. Our numerical calculations suggest that be-
ponentially for largej's to a simple exponential function: sides the eigenvalue one, the eigenvalue with the next largest
absolute value is-0.5688. This means that the characteristic
. _ number of time steps required to converge to the steady state
Ei»=IlmE;;=y(x)e . (3.10  is around 2. Can we be sure that a fixed point vector does
== exist for a general conditional probability matrix? From the
theory of finite dimensional linear algebra it is known that a
conditional probabilities matrix must have a fixed point, but
These probabilities relate to the transition from a very deefn the case of an infinite number of states, a fixed point
step to a step of size cannot be generally guarantefd].
The calculation of the steady-state is not trivial, because it
requires the manipulation of an infinite matrix. It is therefore
B. The steady state P beneficial to study first the behavior of the steady st%l]’te
for largej’s. From now on we will only consider the steady
state and thus will omit the superscript. The steady-state
equation(3.14), can be written explicitly, using Eq3.7):

We can describe the state of the systéire interface
using an infinitely long probability state vect®, whose
componentP; (j=0,...) represents the probability of
the interface to have a step of sigewith

. e~ 2xi(i—1)
Pi=E,i1e| l—a——|P;_
> P=1. (3.1 b 1+ e 2nli-D) 171
j=o0
o 1-e2almh
+y(2)e > ﬁpi
j=i+1 K
The state with a step sigg would be described by the vec- ! pe
tor Pj=4; ., e.9., the statg,=0 (where the two columns y(=) 1— e 2« _
are of equal heightwould be described by the vectét t—-¢ Piy1, 1=2.

. N X 1+Be*2kf(i+l)
=(1,0,0,...). Thedynamics of the system is now described
by the Master equation (3.1
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For largei’s the two last terms are exponentially small. If we 1 1
omit the exponential correction from the first term, we find Xo= e i—y(o)| ——————
that e?rf—1 1-Enyq.€ "
1
Pi:EDO+1,ocPi—1+ O(e_Kfl). (31@ 1— Ew+1’we_3"f
. N . y(®°)Xy iy
The physical meaning is that very high steps are almost al- + T(e f—l1)e" “Eni1.|=0.12%....
ways formed from a shorter step by an upward growth, and
very seldom from higher steps by a growth deep in the (3.19

“fiord.” We therefore use the following substitution: » ) ) ) o )
In addition to this analytical expansion, it is also possible

Pi:XOEiOC+1OC[1+X1e_Kfi+X2e_2"fi+o(e_3’<fi)], to calculateP; numerically. An efficient way is to self-
’ (3.17  consistently include the asymptotic behaviorRjfandE;
for j>I, wherel is an arbitrary order of truncation. For
where thex;’s are constants. Inserting this expansion intoexample, in the first-order approximation,
Eq. (3.15, one can solve for the various orders separately in

a successive manner. For example, the equation for the first PiV=X0EL 1., (> (3.20
order yields .
We can now write a set ofl 1) equations,
yeo) [ 1 1 | o
X1=— - _ .
1 er—l\l_Eoo+1,w 1_Eoo+1,ooe_2Kf Pi—jZ:O EI’JPJ+]=§|;rl Ei,ijl |—0,...], (32:D
N 1—e 2« £ _ 017D 31 in which P; for i=0,...] arel+1 unknowns andP; for |
2 el | T TS 318 - ge approxrmated b?(l) Exact values of; | are used
for 0<i,j=<I, and a first- order approximation is used for the
The second-order equation results in rest of the elements, i.e.,
|
y(®)e “il, I=i=0, j>I, i#j—1,
EV= _ _ 3.2
; (1 e 2xf)y(o)e ¥11~1.3923/(x)e ~f i=l, j=1+1. (322
Thus we substitute
. y(0)e “XoEL Y (1= Euyp) L o<i<l|-1,
S E P~ 1 1-3e 2 _ (3.23
i e e v O
|
into Egs.(3.21). We add the normalization condition, which ei(m)Esupgj<x|P}m)— Pil, (3.29

now has the form

- whereP{™ is themth order approximation. It can be shown
that there exists a constantsuch that

XoEe 10 JOEeiie g
1- Eoc+loc

Z P+ (3.24

i=0. (3.26

e(m)<cE,,.e” ™,
and obtain a set df+2 linear equations with+2 variables

(Pj for j= .] andxg). The accuracy of this solution is
better than 104 for I=5. If we use the third-order approxi-
mation, P{*~xoEL ,, .(1+x,e” “+x,e” 1), this accu-
racy is achieved already fdr=0. This means that we just
have to solve two equations fdt; and x, (x; and x, are
explicit constantsand that the approximatioR; (3 js very

Our numerical evaluation shows thatis on the order of
0.01. In order to make the evaluation we had to first establish
very accurate values fdP;. We did that using increasing
orders of truncation, until we observed that a further in-
crease did not change the valuesRf notably (a notable
difference is about 10°). Then, we compared these accurate

accurate forj=1. Better accuracy will be achreved for a values toP(m) for various values ofn. We plotted the dif-
higher order of truncationl and for higher orders of ferences on a semilogarthmic graph, from which we ex-
asymptotic approximation fol; . Define tracted the value af. The first nine terms of the solution for
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TABLE Il. The first nine components of the steady-state vector.

i 0 1 2 3 4 5 6 7 8

P; 0.2696 0.3113 0.1809 0.1032 0.0586 0.0332 0.0188 0.0106 0.0060

=100 are displayed in Table Il. The solution also yieldsOne can compare this exact value with the value obtained

Xo=0.5718&..., We can noveheck and see that E(.16 using the FST approack:,=0.46[10]. Using Eqs(4.4) and

is fulfilled: (4.2 and Eq.(1.5), we express the fractal dimensi@nas a
function of p:

Ps Ps
— =0.5662, — =0.5659, In
P, Ps po1- MPw ) coag (4.5
In(2)
P Pg SinceD is an analytic function o, for p,,>0, it is now
P_6:0‘5659’ p_7:O'5658¥ Boot 1o (3.2 possible to bound the error in tmeth order analytic evalu-

ation of the fractal dimension:

IV. THE COMPLETE SOLUTION dD ~
|D(m)_D|~ —(pﬂ;)— pup) gceimkfy (4-6)
A. An estimate of the fractal dimension for =1 dpun
In this section we use the knowledge of the evolutionynere
matrix E and of the steady stafe in order to compute the
average density and the fractal dimension of the aggregate. _
We start by computing the average probability for a growth c~ PIn(2) c~0.02. 4.7)
to increase the step size by 1, i.e., an upward growth, up
% The value ofD given in Eqg.(4.5 was obtained using a
Pup=(Ej+1,)j= E Ej.1,P;=0.682... (4.1 Ipw—order expansiorfonly m=0), but' a high-order trunca-
j=0 tion | =100, and the numerical error is much less than“10

This means that one can obtain any desired accuracy by us-
(note that this is true only after the aggregate gets to thég higher-order evaluations. This result can be compared
steady state In practice, one calculates the quantiISfS), with Pietronero’s:D=1.55[10,17] fo_r the (_:Iosed scheme.
which is the numerical evaluation gf,,, using the approxi- W& can make a more exact comparison with FST by extend-
matedp](m) and an approximation for the elemets, , for "9 FST to include 30 growth processes, instead of 2, and by
j>1. It can be shown thdmﬁrg)—pup|$eo(m)$ce’m"f. It using a high ceilingM>1, instead ofM =2, as used by

is possible to obtain much more accurate estimates usinlgletroneroet al. In this case the values,=0.4683 andD
higher orders of truncatioh

Similar to the argument used by Turkevich and Scher
[17], we consider a large number of growth processeés = =  pommmm———————————- - - - - -
the steady state. During this growth the aggregate would
grow higher byh=p,,n. The total area covered by the new . .
growth ishN (N=2 ignthe width of the aggregatethus the Hook of height j=2
density is

_n_.n !t =0.730 4.2
P= 1N PN PN .

.

Although our model does not really produce fractal struc-
tures(due to the narrow width of our spac¢eve can make an 3 N
estimate of the fractal dimension in the same way Pietronero N
et al. estimated it in Eq(1.5). In order to use this equation,
we have to perform a calculation of the probabilités and
C,, which is straightforward:

_C+2C, 1+G,
P T T2

4.3

FIG. 6. The frozen structure behind the interface, composed of
=C,=2p—1=0.4680.... (4.9 hook-shaped substructures that are laid one on top of the other.
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TABLE 1ll. q(j), the exact probability for having a hook thatjisites tall, compared with the relative
number of hooksg(j), in a DLA computer simulation.

i 1 2 3 4 5 6 7 8
a(i) 0.5084  0.2117  0.1213  0.0688  0.0390  0.0221  0.0125  0.0071
10, 05103  0.2127 01196  0.0676  0.0391  0.0225  0.0123  0.0074

=1.5541 are obtained. One can also compare our results
simulation results for the 2D cylindrical DLA, which is
D=1.60-6 [10,12, and to the 2D circular DLA, which is

D=1.71[10,17. These results are summarized in Table I.

B. Analysis of the frozen structure

The steady stat® provides complete statistical informa-

tion about the interface, but it does not describe directly the

tugh-order truncation. These predictions were verified using
a DLA computer simulation. In this simulation we laid
40 000 hooks. Each time a hook of heightvas formed, a
counterq(j) was raised by one. Table Il summarizes the
normalized results: The fluctuations are expected to be of the
order of 14/40 000=0.005. In this respect the measurement
is in excellent agreement with the theory.

The q(j)’'s give complete information about the frozen

properties of the structure behind the interface, which is froStructure, so we can a,|5_° derive the fractal dimen&loand
zen. The key to the analysis is to understand that the struz in terms of theq(j)’s:

ture is actually a series of *hooks” of different heights, piled
one on top of the other. A hook starts abov€aconfigu-
ration and ends at the ne&}, configuration(including). Fig-

ure 6 demonstrates a few such hooks. A full description of
the structure is provided by the set of probabilities of having

a hook of height, which we denote byg(i). The calculation
of theq’'s is straightforward using the steady st&and the

” 1
> iai)+
=1 J

C, —0.4680.... (4.1)

> ia() X iad)
j=1 j=1

evolution matrixE. We have to look at growth processes that Eduation(4.11) sums over the probabilities to have a row

create C, configurations(these are always side growths,
which occur inside the “fjord’):

. 1 < ,
Q(|):1—E Ej*i,jpj- i=1,...90,

> (4.9
upj =

where 1-p,, is the normalization factor because it is the
average probability for a growth to occur inside the fjord.
One can obtain an asymptotic approximationgdf) for i
>1 by using the asymptotic approximation®f and using a
series expansion d&;_; ; in terms ofe™ 2, By doing so,
one can carry out the sum in E@.8) and find out that

q(i ) :;OELOJFlYoo[l-i-’;(le* Kyl +’;(2e*2'<fi + o(e*3;<fi)],

i=2, (4.9
with
~ X oo
Xo= oy(*) ——=0.6720,
(1_pup)(1_Eoo+1,ooe f)
~ 1_Ecx: oceiKf
Xy =X —— T — _0.1567,
1— EOO+lyoce72Kf
~ l_Ew+lwe7Kf
Xo= (%= B) = _—5,—1=09755. (4.10

1_ Ex+1’xe_

Fori=1 the above expression should be multiplied by 1.5

with two occupied sites at the end of hooks of heigkthere
is just one such row in a hook, the height of which)s The
result in Eqg.(4.1)) is the same as in Eq4.4), hence the
estimate of the fractal dimensidh gives the same result as
in Eq. (4.5.

Now that we have thej(j)’s we can also compute the
exact conditional probabilities for having one configuration
follow another in the growth direction, i.e., the FST matrix
elementsM; ;. The conditional probability for having &,
configuration above anothe€, configuration is just the
probability for having a hook of height 1. ThusV,,
=q(1)=0.5084. The conditional probabilityR) for having
a C, configuration above &, configuration,M, ,, can be
expressed as

_ P(Cy atrowk andC, at rowk+1)
L2 P(C, at rowk)

o1
Jszq(J)j— L

> iad)
i=1

G2 4(1)]=0.4324
c.= o [1-a(n)]=04324.

(4.12

These can be compared witM,;,=0.5056 and M, ,
=0.4142 obtained by Pietronero’s direct evaluation in the
closed schemécomputed by summing up to two growlhs
[10].

Why does FST work so well? There are a few differences

because only growths at the bottom of the fjord contribute tdbetween our calculations and the ones performed in Refs.

q(1). Thefirst eight probabilities are presented in Table Il
with an accuracy of 10*. They were evaluated using the
sum (4.8) with very precise values oP;, obtained by a

[10,12 using FST. First, FST uses a ceiling witl =2,
instead ofM =« as is done here, but this seems to have a
small effect on the growth probabilitigtess than 10° for
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TABLE IV. The fractal dimension for different values of —a  the slower is the convergence Bf andq(j). We used in
comparison of our approach to FS@alculated up to two growth this case a truncation scheme witk 100, and achieved an
processes The convergence of the calculation goes IEEgH'x, accuracy of 0.01 fobD.
wherel is the order of truncation.

V. SUMMARY
7 0 0.5 1 2 3 =
We presented a complete theoretical solution of the DLA
D 19144 17723 15538 1.2021 1.07 1 problem in a plane with periodic boundary conditions, with a
Dest 1.8990 1.7515 1.5418 1.1997 1 period of 2. First we identified the possible shapes of the
Bt 0 0.3128 0.5658 0.8547 0.96 1 growing interface, as steps of varying heights. Then we

solved the Laplace equation with the appropriate boundary
conditions. The potential defined the growth probabilities,
n=1). In any case, one can try to implement FST also withwhich we inserted into the evolution matri&x. The matrix

M =< and thus remedy this small effect. Second, the facelementE; ; was the conditional probability to go from a step
that a relatively small number of growth processes is considef size j to a step of sizé in the next time step, by the
ered does not change the FST matrix considerably. This efappropriate growth process. Next we presented the state of
fect could also be fixed by taking into account a larger numthe interface using an infinite vector, which we denoted by
ber of growth processes. Third, in computing, for example P(t). In this notation the dynamics of the system was simply
the conditional probabilities of having @, (or C,) row  described by a transfer matrix, see £8.13. This allowed
above a givercz row, the fact that a fe\ml rows may exist us to look for the Steady State, Wh|Ch.We also denote@by
above the basi€, row at the time of its formation is not We grg_ued thap .'[hIS state was attractive so that starting from
taken into account. This problem is inherent within FST and®"Y initial condition of the system we would reach the steady
cannot be fixed in its framework. However, this effect is Stte in an exponential way. The steady state and the growth
found to be small because the probability for having @0 Pmbab'“t'gs enatkﬁled lils. tf? calcylate thle averagtg pr?l;’att)r']“ty
rows or more above &, row at the time of its formation is or upward growths, which was nversely proportional to the
very small(about 0.02). Moreover, the probability of having average density. We calculated the probability for having a

. . . ; filled row, C,, and the complementary probability for hav-
JC, rows above &, row at the time of its formation decays 5 haff filled row,C,, and used these to obtain the fractal
exponentially as a function of, with the small factor

- : ) dimension,D=1.5538. Our next step was to analyze the
Exi1x€ Kf:_0.151_6_. Repeating the FST computation forthegeometry of the frozen structure. We identified it as being
case of a high ceilingV =<, as in our own scheme, and composed of hooks of different heights, which were laid one
accounting for as many as 30 growth processes, chabges on top of the other. The frozen structure was fully character-
by 3% 10" 4. This difference inD is smaller by an order of jzed by the probabilitieg)(j) of having a hook of heighi.
magnitude from the differences in the FST matrix elementsThis concluded the solution of the problem. We also re-
themselves, which reflect the robustness of the FST approxpeated the same procedure for different values;ofn the
mation. more general DBM model.
The solution we presented is analytical and exact, in the
C. Results for different values of sense that any desired numerical accuracy can be achieved.
. . : ) The steady-state vector was presented as a sum of exponen-
Niemeyer, Pietronero, and Wiesmann introduced theisy gecaying contributions. It was thus possible to bound
DBM with the parameter; appearing in Eq(1.2), also re-  yhe 'maximal error, with an expression that decays exponen-
ferred to as the; model[4,5]. For =0, all possible growths {5y with the order of approximation. A similar bound ap-
have identical probabilities, yielding a special version of thepjies 1o the computed fractal dimension. Our results are very
Eden model, which does not allow growth inside closednse to those obtained by the closed scheme FST. Our re-
Ioop_s. This produqes compact structures, i.e., the fractal and;its are in excellent agreement with DLA simulations,
Euclidean dimensions are equal=2 [in our modelD(7  \yhich we performed in the specified geomettyo sites
=0) is determined by the average density and thus is leS§eriodic boundary conditionsThe same approach can be
than 2 because of the closed loppBor 7=1 we get the jjized for more complex geometries. Although it might be

DLA.rr_10<IjeI, which haQ~1.6, and forp=c we get a de- gifficult to obtain exact results, our method should yield a
terministic model, in which the strongest electric field alwaysgystematic scheme of approximations.

wins, and therefore produces straight lines witk=1. We

see that ag; increases from zero to infinity, the fractal di- ACKNOWLEDGMENTS
mensionD decreases from 2 to 1 continuously and mono- . ) )
tonically. We can get exact results for any valueypin the We wish to thank L. Pietronero, R. Cafiero, and A.

same way that we got the exact results fpe 1. The only \(espignani for interesting discussi.ons gnd for their coopera-
difference is in the values of the evolution matrix elementstion- B-K. thanks Barak Kol for his critical review of this
E.;, which are now evaluated using Eq8.3 and (3.4). paper. This Wor_k was supported by a grant from the German-
The steady state is then computed by solving E&id4 and  'Sraeli Foundation(GIF).

(3.11). pyp, p, C,, andD are evaluated using Eq#t.1),
(4.2, (4.4), and(1.5), and the hook height distributiomyj)
is found using Eq(4.8). The solution is shown in Table IV.
Note that the solution fom=3 is shown with only three Here we present the solution to the Laplace equation us-
significant digits. This is because the higher the valuegyof ing constant potential boundary conditions at the top, rather

APPENDIX: CONSTANT POTENTIAL BOUNDARY
CONDITIONS
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than constant gradient. First, we show(/l) that the gen- constant gradient upper boundary conditions. For filite
eral derivation of Sec. Il A also satisfies the constant potenwe can, once again, express the potential using a modified
tial boundary conditions, foM —o. Then we show i(A2) Green function:
that using constant potential boundary conditions at fikite
for N=2 introduces negligible corrections to the growth
probabilities. N—1
®(mm=m+ 3 HON)Gyu(n;mn), (A4)
n'=0
1. A derivation for a cylinder of arbitrary width

in two dimensions where

We look again at a rectangl®] + 1 sites high and sites
wide, with lateral periodicity. The basis function2.6),
(2.7, and (2.8) are still applicable, because they solve the

Laplace equation regardless of the boundary conditions at Gym(n’;m.n)

the top. The b d diti that t the top thi N-1
tin?e(;pre e boundary conditions that we use at the top this Ei LS Smh_(K'(M_m))cos(k(n—n'))
N <, sinh(kM) ! ’
N—1 (A5)
O(M,n)=M+— > d0n")=M+(f),
Nn’:O
In,m(N)=Gynm(0;10)
n=0,...N—1, (A1)
N—-1 _.
1 sinh(ky(M—1
) . ) =1+ > Mcos(km)}
where(f) is defined by the equation. We used the constant N =1 sinh(kM)
potential to beM +(f) for reasons of convenience, but we (A6)

could have used any other constant, e.g., 1, without changing

the growth probabilities. We use a slightly modified version

of the definition (2.1, &P(m,n)=d(m,n)—m—{f). o

5®(m,n) also solves the discrete Laplace equation, but it 2. The case of finiteM for N=2
obeys different boundary conditions. At the top it has zero Here we analyze the difference in growth probabilities
potential, and at the bottom it i®(m,n)—(f) so that due to the fact that a finit¥ is used instead df1 —o. We
(6P(0,n))=0. A set ofN—1 linearly independent functions only make a comparison &, .. for N=2,
that have zero mean at the bottom obey the boundary condi-

tions at the top, and the discrete Laplace equation are

d(1,2)

Ewy 10— (A7)

. _Sln}’(K|(M_m))eik|n I=1,...N=-1. (A2

_ d(1,)+2>, (—m,0)
P Sin( kg M) ’ m=0

We now bound the difference We use expressiof2.26 with a modified Green function

due to the finiteM:

- 3 sinh(k;(M —m)) e
l@i(m,n)— ¢ (m,n)|= TenaM) !
®(1,1)=1+gom(1)y, (A8)
2e*2K|M - 2e*K|M
= —1_872K|Msmr(;qm)s —1—e*2"'“" .

(A3) wherey=®(0,0) is still to be determined. The potential in
the infinite “fijord” is given by

This bound decays exponentially to zero Bls—x. The

¢'s I1=1,...N—1 form a set ofN—1 functions that span — g akim

the space of solutions that satisfy the boundary conditions ®(m0)=ye (A9)
(for M—). This means that the solution will be identical

for both boundary conditions also an=1 and thus the

boundary Green functiogy(n) will be unchanged. Hence, for m=<0, as in Eq.(2.37 when taking the limitj—oo.
the growth probabilities remain the same as in the case dfherefore,
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1+gom(Dy

2y
1+gom(D)y+ ————
1-e

— ki

Eoo+]_’oc:

2 -1

+
(I-e “H[1y+gom(1)]

(A10)

The equation fow is

4y=0(1,00+P(—1,0=1+[1-gym(1)]y+e “ty

=y=[3-e “+gom(1)] " (A11)

We can now expresB.. , ;.. in terms ofg, (1) only:

2 -1

’ (1—e "N[3—e "+2g,m(1)]

Eoc+l’oc: 1

(A12)
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This is an analytic and smooth function g§,,(1), in the
region 0<g,y(1)=<1. As we show presently, the changes in
02m(1) are exponentially small, and thus the changes in
E.+1. Will be small and proportional to the changes in
g2m(1). One carreadily see that the changesgpy (1) are
indeed small:

_ SiNN(Kma M — 1))

—e fmax sinh( kKyaM )
02(1) = Qo (1) = —5— - !

sinh( k
__e_szale |ﬁ( max)

- e et ALY

The difference inE..;,. is 3.4<10 % for M=2 and 2.9
X107 for M=4. It is reasonable to expect that the differ-
ence inE., . is typical of the changes to the rest of the
growth probabilities.
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