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Solution of diffusion limited aggregation in a narrow cylindrical geometry

Boaz Kol and Amnon Aharony
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University,

69978 Ramat Aviv, Israel
~Received 9 February 1998; revised manuscript received 11 June 1998!

The diffusion limited aggregation model~DLA ! and the more general dielectric breakdown model~DBM!
are solved exactly in a two-dimensional cylindrical geometry with periodic boundary conditions of width 2.
Our approach follows the exact evolution of the growing interface, using the evolution matrixE, which is a
temporal transfer matrix. The eigenvector of this matrix with an eigenvalue of 1 represents the system’s steady
state. This yields an estimate of the fractal dimension for DLA, which is in good agreement with simulations.
The same technique is used to calculate the fractal dimension for various values ofh in the more general
DBM. Our exact results are very close to the approximate results found by the fixed scale transformation
approach.@S1063-651X~98!05010-7#

PACS number~s!: 61.43.Hv, 05.20.2y, 02.50.2r
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I. INTRODUCTION

The problem of diffusion limited aggregation~DLA ! @1#
has been a subject of extensive research for the past de
and a half. This model produces highly ramified and no
smooth patterns that seem to be fractal@2#. These patterns
have a great resemblance to those that are formed in m
natural growth phenomena, such as viscous fingering@3#,
dielectric breakdown@4#, and many more. A good unde
standing of the DLA model should help us to explain t
essential physics of these processes.

A. A short description of the model

In DLA there is a seed cluster of particles fixed som
where; a particle is then released at a distance from it. T
particle diffuses until it attempts to penetrate the fixed cl
ter, in which case it gets stuck and the next particle is
leased. In this way the cluster grows. Simulations ha
shown that DLA clusters form fractal branches. It has be
shown that DLA is equivalent to the dielectric breakdow
model ~DBM! with h51 @4,5#. This paper analyzes th
DBM. The DBM is a cellular automaton that is defined on
lattice. It consists of the following steps: one starts with
seed cluster of connected sites and with a boundary sur
far away from it. A fieldF, which corresponds to the elec
trostatic potential, is found by solving the discrete Lapla
equation on a lattice,

¹2F50. ~1.1!

It is believed that the Laplace equation plays a crucial role
producing fractals in many physical cases, because it ha
length scale and because of its long-range screening q
ties. These growth processes are called Laplacian@9–12#. In
order to solve this equation, the boundary conditions mus
specified. The aggregate is considered to have a con
potential that is usually set to zero. The potential gradient
the distant boundary is set to 1 in some arbitrary units~some
use a constant field on the distant boundary instead!. In this
paper we set the distant boundary at infinity, because we
not wish to consider the effect of approaching the bound
PRE 581063-651X/98/58~4!/4716~14!/$15.00
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as the growth proceeds. However, in the Appendix
present a detailed solution of the case of a constant pote
on the distant boundary, which is set at a finite distance,
show that the difference between the two boundary con
tions is exponentially small, and thus negligible. After so
ing the discrete Laplace equation~1.1! we use the fieldF to
determine the manner in which the cluster continues to gr
The growth process is stochastic and the growth probabili
per perimeter bond are determined by the local values of
electric field, equal to the potential difference across e
bond, i.e., to the potential value at the sites lying across
perimeter bonds:

Pb5
uFbuh

(
b

uFbuh
. ~1.2!

Here,b is the bond index andh is a parameter. One of th
perimeter bonds is chosen randomly according to the dis
bution in Eq. ~1.2! and the site across it is occupied. Th
growth continues by resolving the Laplace equation~1.1!,
etc. Notice that the boundary conditions have changed a
because the potential on the newly occupied site is set to
this time. This growth model manufactures fractal clust
without the need to fine tune any parameter and thus dif
from ordinary critical phenomena and belongs to the clas
self-organized criticality~SOC! @6#. The DBM can be grown
in different geometries. By geometry we refer to the dime
sionality of the lattice, to the shapes of the boundaries, an
the details of the seed for growth~usually a point or a line for
two-dimensional growth!. For instance, the case in which th
distant boundary is a sphere is called radial boundary co
tions, and the case in which the boundary is a distant plan
the top, while the seed cluster is a parallel plane at the b
tom with periodic boundary conditions on the sides, is cal
cylindrical boundary conditions.

There has been considerable work on simulating DLA a
measuring its fractal dimension. The accepted value for
fractal dimension isD51.715 @7# for circular DLA in two
dimensions~2D! andD51.66 for infinitely wide cylindrical
DLA @8#. More details and references on numerical analy
could be found elsewhere@12#. A summary of values of the
4716 © 1998 The American Physical Society
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PRE 58 4717SOLUTION OF DIFFUSION LIMITED AGGREGATION . . .
fractal dimension, obtained by simulations and by theoret
approaches discussed in this paper, appears in Table I.

B. The fixed scale transformation approach to DBM

A novel approach to the DBM, called the fixed sca
transformation~FST!, was introduced by Pietroneroet al.
with considerable success@9–12#. Because our work was
motivated and inspired by FST, we include a short desc
tion of this approach, which is close in spirit to the real-spa
renormalization group~RSRG!, but yet very different. While
the RSRG transformation changes the scale, the FST k
the same scale while moving in the growth direction in r
space. FST analyzes the statistics of the frozen struc
which is far behind the growing front. This region is calle
frozen because it has very low growth probabilities due
the screening of the Laplace equation. The FST actually a
lyzes a cross section perpendicular to the growth direct
The most simple case studied by FST is that of the tw
dimensional cylindrical geometry@10,12#. In 2D the sites on
the cross section are gathered into pairs. A nonempty
can have either one or two occupied sites. The probabili
for these two cases are denoted byC1 andC2 , respectively;
see Fig. 1. Then we have

C11C251. ~1.3!

In FST one calculates the conditional probabilities of hav
one configuration follow another in the growth directio
These probabilities make up the FST matrix:

TABLE I. A summary of our results vs the FST results a
results obtained from simulations.

Method Fractal dimensionD Ref.

Our scheme 1.5538 Present
23` simulation 1.554 Present
FST closed scheme 1.55 @10#

FST with
empty configurations

closed scheme 1.4655 @13#

Radial simulation 1.715 @7,12#
Cylindrical simulation 1.60–66 @8,12#

FIG. 1. Possible occupations of two adjacent sites on an in
section of a DBM structure that is perpendicular to the grow
direction. These configurations have probabilitiesC1 and C2 as
shown.
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S C1

C2
D ~k11!

5S M1,1 M2,1

M1,2 M2,2D S C1

C2
D ~k!

. ~1.4!

The matrix elementMi , j represents the conditional probab
ity of having a configurationj at the (k11)th row, provided
there is a configurationi at thekth row, right below it; see
Fig. 2. The fixed point of this transformation represents
asymptotic limit for the probabilities,C1* and C2* . In this
asymptotic limit, the average number of sites in each row
^n&5C1* 12C2* 511C2* . For a self-similar fractal structure
one expects that a change of scale by a factor 2 will cha
the average mass of a linear cut by a factor 2D21, whereD
is the fractal dimensionality of the full 2D fractal. Assumin
that the above procedure represents a coarse graining o
sites into cells of width 2, Pietroneroet al. thus concluded
that ^n&52D21, i.e.,

D511
ln~^n&!

ln~2!
511

ln~C1* 12C2* !

ln~2!
511

ln~11C2* !

ln~2!
.

~1.5!

To calculate the FST matrix, one must consider all poss
growth processes, taking account of the boundary conditio
Pietroneroet al. computed the probabilities using differen
‘‘schemes.’’ Here we follow one scheme, referred to
‘‘closed’’: it is periodic with a period of two sites, i.e., th
structure is divided into columns, two sites wide, which a
all identical. In order to calculate the elementM2,1, Pietron-
eroet al. set thekth row to be aC2 configuration. Then they
considered all possible growth processes that resulted
configurationC1 at the (k11)th row, and added them u
with the corresponding statistical weights. These statist
weights were determined by multiplying the probabilities f
the successive growths. A similar procedure was done for
rest of the matrix elements, with the resulting fractal dime
sion of D51.55. Further enhancements of FST we

r-

FIG. 2. The conditional probability of having a configurationCj

above a configurationCi is the FST matrix elementMi , j . This
figure shows aC2 configuration at thekth row. The probability for
having aC1 configuration right above it isM2,1.
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4718 PRE 58BOAZ KOL AND AMNON AHARONY
achieved by including empty configurations@13# and by
working with the scale invariant growth rules@14#. FST also
works well in 3D @15#.

FST is not exact, because not all possibilities are ta
into account. For example, in the calculation of the elem
M1,1, Pietroneroet al. assume that there is aC1 configura-
tion at thekth row, but they do not consider what happe
below it. This is equivalent to assuming that there is aC2
configuration right below it, whereas in reality there mig
be a few consecutiveC1 rows. In the calculation of the ele
ment M2,2 they assume that there is nothing above
whereas in reality, at the time that aC2 row is formed there
may be a fewC1 rows above it. Moreover, the evaluation
the elements is done by summing over a finite number
growth processes, whereas ideally, one should sum ove
finite growth processes. It is also hard to evaluate the erro
the various quantities, e.g., the FST matrix elementsMi , j and
the fractal dimensionD.

C. Overview

In this paper we solve the DBM in the geometry referr
to by Pietroneroet al. as ‘‘closed,’’ i.e., in a 2D column tha
is very tall but only two sites wide, with periodic latera
boundary conditions. Each nonempty row can be either aC1
or aC2 configuration. Our solution gives the exact probab
ties for C1 and C2 , but not through the FST approach.
spite of this, we get very similar results, which validate tho
of Pietroneroet al. The differences between our results a
those obtained with FST are summarized in Table I for
caseh51. Our approach is different from FST, because
use the interface rather than single rows in the frozen a
We focus our attention on the interface because it determ
the solution of the Laplace equation~1.1!. The solution to the
equation is totally unaffected by what happens behind
interface, i.e., by the rest of the structure. The solution a
does not depend on the history of the growth that led to

FIG. 3. The coordinates (m,n) describe the location on a lattic
that is two sites wide. The gray sites belong to the interface of
aggregate, which is shaped as a step whose size isj .
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specific interface shape. We consider all the possible sha
that the interface can assume, and for each possible shap
solve the Laplace equation. In the case of periodic bound
conditions with period 2 the characterization is simple:
single parameter characterizes all the possible shapes tha
interface can have. This parameter, which we denote byi or
j , is the height difference between the two columns, wh
we will call ‘‘the step size.’’ This parameter is explained
Fig. 3. In the situation where the two columns are of t
same height, it is obvious that the growth probabilities a
equal for both sides. Therefore we can assume that
growth will always be on the same side in such an event,
instance on the right side. This means that the step size
always be considered as non-negative.

We start by solving the Laplace equation~1.1! ~the elec-
trostatic problem! for each possible interface~Sec. II!. First
we present a general derivation in 2D with periodic late
boundary conditions~with a general width!, then we solve
for F in our special geometry of width 2~the ‘‘closed’’
scheme!. We do it by dividing the plane into two parts: th
upper part, which is empty, and the lower part, which co
tains the structure. We match up the two solutions by writ
down the explicit equation for the site common to both pa
From the potential we get the growth probabilities accord
to Eq. ~1.2!. In Sec. III we arrange them in a matrix, whic
we call the evolution matrix, which functions as a tempo
transfer matrix for this problem. This matrix is infinite, bu
the matrix elementsEi , j decay exponentially for largei . We
then calculate the steady state that is the fixed point of
evolution matrix. In Sec. IV we use the evolution matrix a
the steady state in order to calculate the average densit
the aggregate, and therefore also the probabilityC2 and the
fractal dimension. We continue by analyzing the froz
structure below the growing interface. We observe that
frozen structure is made of a series of elements, which
call ‘‘hooks,’’ and we calculate the statistics of their appea

e

FIG. 4. The dispersion relations for the discrete and continu
Laplace equation in 2D. The solid line shows the discrete rela
sinh(k/2)56sin(k/2), and the dashed line shows the continuo
relationk56k.
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PRE 58 4719SOLUTION OF DIFFUSION LIMITED AGGREGATION . . .
ance. By doing so, we fully characterize the structure.
carry out the same procedure for a few different values oh
in the more general DBM. We summarize in Sec. V. T
Appendix presents the solution in the case of cons
boundary conditions at the top instead of constant gradie

II. THE SOLUTION OF THE ELECTROSTATIC
PROBLEM

A. A derivation for a cylinder of arbitrary width
in two dimensions

1. The basis solutions and the dispersion relation

Before solving the Laplace equation for our special geo
etry, we present a derivation that applies to general syst
with periodic boundary conditions in 2D. We look at a rec
angle,M11 sites high andN sites wide, with lateral period
icity. The Laplace equation is satisfied by every site in t
rectangle. This is the situation in those parts in space tha
unoccupied by the aggregate. First, we find a set of b
functions that span the linear space of solutions. These b
functions obey the discrete Laplace equation and have la
periodicity, but do not obey the boundary conditions on
upper and lower boundaries. We formulate the latter bou
ary conditions and find the solution that obeys them by fi
ing the right constants for the linear combination of the ba
functions. In this process the boundary Green function w
emerge.

The discrete Laplace equation in 2D is

$@F~m,n11!2F~m,n!#2@F~m,n!2F~m,n21!#%

1$@F~m11,n!2F~m,n!#

2@F~m,n!2F~m21,n!#%50. ~2.1!

Inserting an exponential solution,

F~m,n!5ekm1 ikn, ~2.2!

Eq. ~2.1! yields the dispersion relation

sinh2~k/2!5sin2~k/2! ~2.3!

⇒k~k!562 sinh21
„sin~k/2!…

5 ln~q6Aq221!, ~2.4!

where q[22cos(k). This reduces to the linear dispersio
relation for the continuous Laplace equation:k56k, in the
limit where the lattice constant is much smaller than
potential ‘‘wave length’’:l[2p/k@1. The relations for the
discrete and continuous cases are shown in Fig. 4. The
crete case introduces an upper cutoff on the absolute valu
k,

k~k5p![kmax52 sinh21
„sin~p/2!…

5 ln~31A8!51.7627. . . . ~2.5!

The maximum corresponds to the shortest possible wa
length, i.e., two sites. For a periodN, the periodic boundary
conditions require thateikN51, hencekl52p l /N with l
50,1, . . . ,N21. For eachk we have two possiblek8s: k l
e
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[6k(kl)56k(2pl/N) with l 50,1, . . . ,N21. The casek0
50 is special, because there is apparently only one solu
with k050, namely

w0~m,n!5e0m1 i0n51. ~2.6!

The second solution is obtained by considering the limit

c0~m,n!5 lim
k,k→0

e1km1 ikn2e2km1 ikn

2k

5
]ekm1 ikn

]k U
k,k50

5m. ~2.7!

The rest of the 2N22 basis solutions are

w l~m,n!5e2k lm1 ikln, l 51, . . . ,N21,

c l~m,n!5e1k lm1 ikln, l 51, . . . ,N21. ~2.8!

2. The solution to the boundary conditions problem
and the Green function

The boundary conditions at the top row are that the g
dient ~difference! is uniform and equal to 1 in some arbitrar
units:

F~M ,n!2F~M21,n!51, n50, . . . ,N21. ~2.9!

This condition corresponds to a uniform flux of incomin
particles@1#. At the bottom the potential is

F~0,n!5 f ~n!, n50, . . . ,N21, ~2.10!

where f (n) is an arbitrary function. We define

dF~m,n![F~m,n!2m. ~2.11!

dF(m,n) also solves the discrete Laplace equation, bu
obeys different boundary conditions. At the top it has ze
gradient, and at the bottom it is the same asF(m,n). A set
of N linearly independent functions that obey the bound
conditions at the top and the discrete Laplace equation a

w̃ l5
cosh„k l~M21/22m!…

cosh„k l~M21/2!…
eikln, l 50, . . . ,N21.

~2.12!

We now take the limitM→`, and observe thatw̃ l→w l ~Pi-
etroneroet al. usedM52 in their calculations in Ref.@10#!.
In the Appendix we present the solution to the case o
constant potential at the distant boundary, which is kept
finite distanceM . We show that the difference in the Gree
function for N52 is exponentially small and negligibl
when M→`. We have thus discardedN of our basis solu-
tions, which we denoted byc l(m,n), l 50, . . . ,N21. The
remainingN basis functions obey an orthogonality conditio
at the bottom boundary:

(
n850

N21

w l* ~0,n8!w l 8~0,n8!5Nd l ,l 8 . ~2.13!
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4720 PRE 58BOAZ KOL AND AMNON AHARONY
The solution will be a linear combination of these basis
lutions:

dF~m,n!5 (
l 50

N21

xlw l~m,n!, ~2.14!

wherexl , l 50, . . . ,N21 areN complex scalars. The or
thogonality condition~2.13! implies that

Nxl 0
5 (

n850

N21

w l 0
* ~0,n8!dF~0,n8!, ~2.15!

and therefore

dF~m,n!5
1

N (
l ,n850

N21

w l* ~0,n8! f ~n8!w l~m,n!

5 (
n850

N21

f ~n8!GN~n8;m,n!, ~2.16!

where we introduce the boundary Green function:

GN~n8;m,n!5
1

N (
l 50

N21

w l* ~0,n8!w l~m,n!

5
1

N (
l 50

N21

eikl ~n2n8!e2k lm. ~2.17!

Being a linear combination of basis functions,GN(n8;m,n)
also obeys the discrete Laplace equation. Whenm→`, the
function has zero gradient, and at the bottom boundar
obeys

GN~n8;0,n!5dn8,n . ~2.18!

The fact that the specified boundary conditions are real
symmetric with respect to n5n8 also means tha
GN(n8;m,n) is real and symmetric, i.e.,

FIG. 5. Possible growth processes that change the interface
an initial step sizej 53 to a final sizei 54,0,1,2. The growth prob-
ability is determined by the potential and the number of bon
associated with the site where growth is to occur.
-

it

d

GN~n8;m,n!5
1

N (
l 50

N21

e2k lmcos„kl~n2n8!…. ~2.19!

The growth probabilities will be determined by the potent
values near the interface, so only the rowsm50 andm51
will be of importance to us. In this formulation, the rowm
50 is known, so we are really only interested in the ro
m51, which will be determined byGN(0;1,n). We there-
fore denote

gN~n![GN~0;1,n!5
1

N (
l 50

N21

e2k lcos~kln!,

n50, . . . ,N21. ~2.20!

Before proceeding we note that

(
n50

N21

gN~n!5 (
n50

N21

w0* ~1,n!GN~0;1,n!5 (
l 50

N21
1

N
51.

~2.21!

The final expression for the solution in a cylinder of widthN
is

F~1,n!511dF~1,n!511 (
n850

N21

gN~ un2n8u!F~0,n8!.

~2.22!

B. Solution of the electrostatic problem with period 2

We now turn to solve forF in our geometry~Fig. 3!. We
note again that all of the structure below the interface has
effect on the solution forF, and hence does not change t
growth probabilities. As mentioned earlier, the interface h
the shape of a step whose height is variable. The condit
for the derivation of Sec. II A are not fulfilled now becaus
the set of sites that obey the discrete Laplace equation do
form a rectangle. We therefore solve the problem by diss
ing the plane into two parts; the upper part withm>0, which
is empty, and the lower part withm<0, which contains the
aggregate. First, we solve the Laplace equation~2.1! for the
upper and the lower parts separately, expressing them
terms of the potential at the connecting site,F(0,0), which
is denoted byy. Then we write the explicit Laplace equatio
for the site (0,0) to patch the two parts together.

1. The upper part solution

The upper partm>0 is rectangular with lateral periodic
ity with N52 and with gradient 1 form→`, so we apply
the general derivation of Sec. II A. We havekl50,p and
k l50,kmax for l 50,1, respectively. We calculate the valu
of the Green function using Eq.~2.20! and Eq.~2.21!:

g2~0!5
11e2kmax

2
5

1132A8

2
522A2, ~2.23!

g2~1!512g2~0!5A221. ~2.24!

m

s
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The conditions at the lower boundary areF(0,n)5y,0 for
n50,1, respectively, wherey[F(0,0) is yet to be deter-
mined. We obtain the solution for the upper part by using
~2.22!:

Fup~1,0!511yg2~0!511~22A2!y, ~2.25!

Fup~1,1!511yg2~1!511~A221!y. ~2.26!

2. The lower part solution

Here we have to solve the potential inside the ‘‘fjord
which is one site wide andj sites deep~Fig. 3!. Since both
sides of the ‘‘fjord’’ belong to the structure, withF50, the
equation for the potential in the lower part is

4F low~m,0!5F low~m21,0!1F low~m11,0!. ~2.27!

Substituting a solution of the formF low(m,0)5ek fm, we find
that

sinh~k f /2!561/A256sin~p/4!, ~2.28!

with the positive solution

k f5k~k5p/2!52 sinh21~1/A2!

5 ln~21A3!51.3170. . . . ~2.29!

The solution will be a linear combination of the two sol
tions:
-

e

ion
.

F low~m,0!5u1e2k fm1u2ek fm, ~2.30!

where the coefficientsu1 and u2 are determined by the
boundary conditions:

F~0,0!5y,

F~2 j ,0!50, ~2.31!

and the solution is

F low~m,0!5y
sinh„k f~m1 j !…

sinh~k f j !
5yek fm

12e22k f ~m1 j !

12e22k f j
,

m52 j , . . . ,0. ~2.32!

3. The solution for y[F„0,0…

We have expressed the potential for all the sites as a fu
tion of y. The value fory is obtained from the Laplace
equation for (0,0),

4y5F~21,0!1F~1,0!

5y
sinh„k f~ j 21!…

sinh~k f j !
111~22A2!y. ~2.33!

We can simplify this a bit by expanding the term
sinh „k f~ j 21!…5cosh~k f !sinh~k f j !2sinh~k f !cosh~k f j !52 sinh~k f j !2A3 cosh~k f j !

⇒ sinh„k f~ j 21!…

sinh~k f j !
522A32A3

e2k f j

sinh~k f j !
522A322A3

e22k f j

12e22k f j
, ~2.34!
ci-
ate,

s.
tart
yielding

y~ j !5S A21A312A3
e22k f j

12e22k f j D 21

5y~`!
12e22k f j

11be22k f j
,

~2.35!

where we denotey(`)[A32A250.3178 . . . andb[5
2A2450.1010 . . . . Theonly parameter on which the solu
tion depends is the step sizej . The dependence onj is not
strong; already forj 54 the solution is almost identical to th
solution for j 5`.

We conclude this section with a summary of the solut
on the external boundary of the cluster:

F j~1,1!511g2~1!y~ j !511g2~1!y~`!
12e22k f j

11be22k f j
,

~2.36!
F j~m,0!5y~ j !
sinh„k f~m1 j !…

sinh~k f j !

5y~`!ek fm
12e22k f ~ j 1m!

11be22k f j
, m52 j , . . . ,0.

~2.37!

The subscriptj denotes the step size. The potential is spe
fied only for sites that are nearest neighbors to the aggreg
and thus candidates for growth.

III. THE EVOLUTION MATRIX
AND THE STEADY STATE

A. The evolution matrix E

We now proceed to calculate the growth probabilitie
Growth can be considered as a process in which we s
with a step of sizej and end up with a step of sizei , with
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conditional probabilityEi , j ~note the different notation, com
pared to Pietroneroet al’s M j ,i). The new step sizei may be
either equal toj 11 ~by a growth process in the same co
umn!, or smaller thanj ~by a growth process in the adjace
, i
at
1

at
th
-
as
e
it
column!. The transitions are explained in Fig. 5.Ei , j depends
on the potential at the relevant site, which we denote byFi , j ,
for which we can write explicit expressions using the fin
results of the preceding section:
Fi , j[5
F j~2 i ,0!5y~`!e2k f i

12e22k f ~ j 2 i !

11be22k f j
, 0< i< j 21

F j~1,1!511g2~1!y~`!
12e22k f j

11be22k f j
, i 5 j 11

0 otherwise

6 , j >1. ~3.1!
ion
The

ual
he
des
ons

d-
l-

th
In the casej 50 there are two possible growth processes
sites (1,0) and (1,1), but both of them result in a final st
with j 51. The potential at these two sites is equal to
hence F1,051 and Fi ,050 for iÞ1. We note that each
growth process has a different number of bonds associ
with it: The growth upwards has one bond, whereas all
side growths have two bonds~due to the periodic bound
aries!, except for the growth at the bottom site, which h
three bonds. This is manifested in the bond matrix elem
Bi , j , which is equal to the number of bonds associated w
a growth process that transforms a step of sizej into a step
of size i ,

Bi , j55
1, i 5 j 11

2, 0< i< j 22

3, i 5 j 21

0 otherwise
6 , j >1. ~3.2!

For j 50 there are two bonds~leading to different sites! that
‘‘grow’’ to the state j 51, henceB1,052 and Bi ,050 for
iÞ1. The growth probabilities are computed using Eq.~1.2!:

Ei , j~h!5
Bi , jFi , j

h

Sj~h!
, i , j 50, . . . ,̀ , ~3.3!

where we denote
n
e
,

ed
e

nt
h

Sj~h!5(
i 50

`

Bi , jFi , j
h , j 50, . . . ,̀ ~3.4!

as the normalization factor.
From now until Sec. IV C we only deal with the caseh

51, which corresponds to DLA. In this case, the evaluat
of Sj (h) becomes simple, since we can use Gauss’ law.
continuous version of the law,*dV¹2F5rdA¹nF, trans-
forms into

(
bulk sites

¹2F5 (
interface bonds

DF ~3.5!

in the discrete case. In our case the term on the left is eq
to zero. The term on the right includes contributions from t
top and bottom boundaries only. The sum over the si
cancels because of the periodicity. The boundary conditi
at the top require that the gradient ofF is 1, so the sum over
the top equalsN52. Thus, the sum over the bottom boun
ary is equal to22, but it is also equal to minus the norma
ization factor, hence

Sj~h51!5(
i 50

`

Bi , jFi , j52, j 50, . . . ,̀ . ~3.6!

This enables us to write explicit expressions for the grow
probabilities:
Ei , j55
y~`!e2k f i

12e22k f ~ j 2 i !

11be22k f j
, 0< i< j 22

3

2
y~`!e2k f ~ j 21!

12e22k f

11be22k f j
, i 5 j 21

E`11,̀ S 12a
e22k f j

11be22k f j D , i 5 j 11

0 otherwise

6 , j >1, ~3.7!

where

E`11,̀ 5 lim
j→`

Ej 11,j5@11g2~1!y~`!#/250.5658 . . . ~3.8!
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and a5(11b)g2(1)y(`)/(2E`11,̀ )50.1281. . . . For j
50, the interface will transform into a step of sizej 51 with
probability 1, henceE1,051 andEi ,050 for iÞ1. The values
of Ei , j are shown here for 0< i , j <4, up to the fourth deci-
mal digit:

E53
0 0.4393 0.3160 0.3177 0.3178•••

1 0 0.1185 0.0847 0.0851

0 0.5607 0 0.0318 0.0227

0 0 0.5655 0 0.0085

0 0 0 0.5658 0

A �

4 .

~3.9!

Let us examine some additional features of the mat
The normalization requires that the sum of the element
each column be equal to 1,( i 50

` Ei , j51 for j 50, . . . ,̀ . No-
tice that the main diagonal is zero. This occurs because t
is no chance of staying with the same step size after a gro
process. The first diagonal below the main, which repres
the probability for the step to grow larger by 1,Ej 11,j grows
just a bit as we go down, approaching an asymptotic valu
E`11,̀ '0.5658 exponentially, as the third row of Eq.~3.7!
indicates. The diagonal above the main represents the p
abilities for growths at the bottom of the step,Ej 21,j , and
corresponds to the second row in Eq.~3.7!. These probabili-
ties decay exponentially as the step grows deeper. Accor
to the first row in Eq.~3.7!, the elementsEi , j converge ex-
ponentially for largej 8s to a simple exponential function:

Ei ,`5 lim
j→`

Ei , j5y~`!e2k f i . ~3.10!

These probabilities relate to the transition from a very de
step to a step of sizei .

B. The steady state P*

We can describe the state of the system~the interface!
using an infinitely long probability state vectorP, whose
componentPj ( j 50, . . . ,̀ ) represents the probability o
the interface to have a step of sizej , with

(
j 50

`

Pj51. ~3.11!

The state with a step sizej 0 would be described by the vec
tor Pj5d j , j 0

, e.g., the statej 050 ~where the two columns

are of equal height! would be described by the vectorP
5(1,0,0,. . . ). Thedynamics of the system is now describ
by the Master equation
.
in

re
th
ts

of

b-

ng

p

Pi~ t11!5(
j

Ei , j Pj~ t !, ~3.12!

or in matrix notation,

P~ t11!5EP~ t !. ~3.13!

Equation~3.13! also shows that the matrixE functions as a
transfer matrix and justifies the name ‘‘evolution matrix.’’
similar statistical description of nonequilibrium dynamic
systems was already given by Vespignaniet al. @16#. A state
of particular interest is the steady state, which satisfies

P*5EP* . ~3.14!

It can be shown that if such a state exists it must be att
tive, i.e., it is reached from any initial vectorP(0). Specifi-
cally, the differenceP(t)2P* decays exponentially for large
t: the absolute value of all the eigenvalues ofE must be less
than or equal to 1. This is becauseE is a matrix of condi-
tional probabilities, i.e., it transforms a probability vect
into a probability vector. If there was an eigenvalue who
absolute value was greater than 1, then after a few iterat
P(t) would either contain negative elements or eleme
greater than 1. Our numerical calculations suggest that
sides the eigenvalue one, the eigenvalue with the next lar
absolute value is20.5688. This means that the characteris
number of time steps required to converge to the steady s
is around 2. Can we be sure that a fixed point vector d
exist for a general conditional probability matrix? From t
theory of finite dimensional linear algebra it is known tha
conditional probabilities matrix must have a fixed point, b
in the case of an infinite number of states, a fixed po
cannot be generally guaranteed@16#.

The calculation of the steady-state is not trivial, becaus
requires the manipulation of an infinite matrix. It is therefo
beneficial to study first the behavior of the steady statePj*
for large j ’s. From now on we will only consider the stead
state and thus will omit the superscript. The steady-s
equation~3.14!, can be written explicitly, using Eq.~3.7!:

Pi5E`11,̀ S 12a
e22k f ~ i 21!

11be22k f ~ i 21!D Pi 21

1y~`!e2k f i (
j 5 i 11

`
12e22k f ~ j 2 i !

11be22k f j
Pj

1
y~`!

2
e2k f i

12e22k f

11be22k f ~ i 11!
Pi 11 , i>2.

~3.15!
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For largei ’s the two last terms are exponentially small. If w
omit the exponential correction from the first term, we fi
that

Pi5E`11,̀ Pi 211O~e2k f i !. ~3.16!

The physical meaning is that very high steps are almost
ways formed from a shorter step by an upward growth, a
very seldom from higher steps by a growth deep in
‘‘fjord.’’ We therefore use the following substitution:

Pi5x0E`11,̀
i @11x1e2k f i1x2e22k f i1O~e23k f i !#,

~3.17!

where thexi ’s are constants. Inserting this expansion in
Eq. ~3.15!, one can solve for the various orders separately
a successive manner. For example, the equation for the
order yields

x152
y~`!

ek f21
S 1

12E`11,̀
2

1

12E`11,̀ e22k f

1
12e22k f

2
E`11,̀ D 520.1772 . . . . ~3.18!

The second-order equation results in
h

s
-

t

a
f

l-
d
e

n
rst

x25
1

e2k f21
Fae2k f2y~`!S 1

12E`11,̀ e2k f

2
1

12E`11,̀ e23k f
D

1
y~`!x1

2
~e2k f21!e2k fE`11,̀ G50.1296 . . . .

~3.19!

In addition to this analytical expansion, it is also possib
to calculatePj numerically. An efficient way is to self-
consistently include the asymptotic behavior ofPj and Ei , j
for j . l , where l is an arbitrary order of truncation. Fo
example, in the first-order approximation,

Pj
~1!5x0E`11,̀

j , j . l . ~3.20!

We can now write a set of (l 11) equations,

Pi5(
j 50

l

Ei , j Pj1 (
j 5 l 11

`

Ei , j Pj , i 50, . . . ,l , ~3.21!

in which Pi for i 50, . . . ,l are l 11 unknowns andPj for j
. l are approximated byPj

(1) . Exact values ofEi , j are used
for 0< i , j < l , and a first-order approximation is used for th
rest of the elements, i.e.,
Ei , j
~1!5H y~`!e2k f i , l> i>0, j . l , iÞ j 21,

3

2
~12e22k f !y~`!e2k f i'1.3923y~`!e2k f i , i 5 l , j 5 l 11.

~3.22!

Thus we substitute

(
j 5 l 11

`

Ei , j Pj'H y~`!e2k f ix0E`11,̀
l 11 ~12E`11,̀ !21, 0< i< l 21,

y~`!e2k f ix0E`11,̀
l 11 S 1

12E`11,̀
1

123e22k f

2 D , i 5 l
~3.23!
n

lish

-

te

x-
r

into Eqs.~3.21!. We add the normalization condition, whic
now has the form

(
j 50

l

Pj1
x0E`11,̀

l 11

12E`11,̀
51, ~3.24!

and obtain a set ofl 12 linear equations withl 12 variables
(Pj for j 50, . . . ,l andx0). The accuracy of this solution i
better than 1024 for l>5. If we use the third-order approxi
mation, Pj

(3)'x0E`11,̀
j (11x1e2k f j1x2e22k f j ), this accu-

racy is achieved already forl 50. This means that we jus
have to solve two equations forP0 and x0 (x1 and x2 are
explicit constants! and that the approximationPj

(3) is very
accurate forj >1. Better accuracy will be achieved for
higher order of truncationl and for higher orders o
asymptotic approximation forPj . Define
ei~m![supi< j ,`uPj
~m!2Pj u, ~3.25!

wherePj
(m) is themth order approximation. It can be show

that there exists a constantc such that

ei~m!<cE`11,̀
i e2mk f , i>0. ~3.26!

Our numerical evaluation shows thatc is on the order of
0.01. In order to make the evaluation we had to first estab
very accurate values forPj . We did that using increasing
orders of truncationl , until we observed that a further in
crease did not change the values ofPj notably ~a notable
difference is about 1029). Then, we compared these accura
values toPj

(m) for various values ofm. We plotted the dif-
ferences on a semilogarthmic graph, from which we e
tracted the value ofc. The first nine terms of the solution fo
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TABLE II. The first nine components of the steady-state vector.

j 0 1 2 3 4 5 6 7 8

Pj 0.2696 0.3113 0.1809 0.1032 0.0586 0.0332 0.0188 0.0106 0.0
ds

on

a
th

th
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he

u
w

c

e
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ned
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us-
red
.
nd-
by

of
r.
l 5100 are displayed in Table II. The solution also yiel
x050.571 86 . . . , We can nowcheck and see that Eq.~3.16!
is fulfilled:

P5

P4
50.5662,

P6

P5
50.5659,

P7

P6
50.5659,

P8

P7
50.5658'E`11,̀ . ~3.27!

IV. THE COMPLETE SOLUTION

A. An estimate of the fractal dimension for h51

In this section we use the knowledge of the evoluti
matrix E and of the steady stateP in order to compute the
average density and the fractal dimension of the aggreg
We start by computing the average probability for a grow
to increase the step size by 1, i.e., an upward growth,

pup5^Ej 11,j& j5(
j 50

`

Ej 11,j Pj50.6812 . . . ~4.1!

~note that this is true only after the aggregate gets to
steady state!. In practice, one calculates the quantitypup

(m) ,
which is the numerical evaluation ofpup, using the approxi-
matedPj

(m) and an approximation for the elementsEj 11,j for
j . l . It can be shown thatupup

(m)2pupu<e0(m)<ce2mk f . It
is possible to obtain much more accurate estimates u
higher orders of truncationl .

Similar to the argument used by Turkevich and Sc
@17#, we consider a large number of growth processesn in
the steady state. During this growth the aggregate wo
grow higher byh5pupn. The total area covered by the ne
growth ishN (N52 is the width of the aggregate!, thus the
density is

r5
n

hN
5

n

pupnN
5

1

pupN
50.7340 . . . . ~4.2!

Although our model does not really produce fractal stru
tures~due to the narrow width of our space!, we can make an
estimate of the fractal dimension in the same way Pietron
et al. estimated it in Eq.~1.5!. In order to use this equation
we have to perform a calculation of the probabilitiesC1 and
C2 , which is straightforward:

r5
C112C2

2
5

11C2

2
, ~4.3!

⇒C252r2150.4680. . . . ~4.4!
te.

e

ng

r

ld

-

ro

One can compare this exact value with the value obtai
using the FST approach:C250.46@10#. Using Eqs.~4.4! and
~4.2! and Eq.~1.5!, we express the fractal dimensionD as a
function of pup:

D512
ln~pup!

ln~2!
51.5538. ~4.5!

SinceD is an analytic function ofpup for pup.0, it is now
possible to bound the error in themth order analytic evalu-
ation of the fractal dimension:

uD ~m!2Du'U dD

dpup
~pup

~m!2pup!U< c̃e2mk f , ~4.6!

where

c̃'U 1

pupln~2!
Uc'0.02. ~4.7!

The value ofD given in Eq.~4.5! was obtained using a
low-order expansion~only m50), but a high-order trunca
tion l 5100, and the numerical error is much less than 1024.
This means that one can obtain any desired accuracy by
ing higher-order evaluations. This result can be compa
with Pietronero’s:D51.55 @10,12# for the closed scheme
We can make a more exact comparison with FST by exte
ing FST to include 30 growth processes, instead of 2, and
using a high ceilingM@1, instead ofM52, as used by
Pietroneroet al. In this case the valuesC250.4683 andD

FIG. 6. The frozen structure behind the interface, composed
hook-shaped substructures that are laid one on top of the othe
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TABLE III. q( j ), the exact probability for having a hook that isj sites tall, compared with the relativ

number of hooks,q̃( j ), in a DLA computer simulation.

j 1 2 3 4 5 6 7 8

q( j ) 0.5084 0.2117 0.1213 0.0688 0.0390 0.0221 0.0125 0.007

q̃( j ) 0.5103 0.2127 0.1196 0.0676 0.0391 0.0225 0.0123 0.007
ts
s
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51.5541 are obtained. One can also compare our resul
simulation results for the 2D cylindrical DLA, which i
D51.6026 @10,12#, and to the 2D circular DLA, which is
D51.71 @10,12#. These results are summarized in Table

B. Analysis of the frozen structure

The steady stateP provides complete statistical informa
tion about the interface, but it does not describe directly
properties of the structure behind the interface, which is f
zen. The key to the analysis is to understand that the st
ture is actually a series of ‘‘hooks’’ of different heights, pile
one on top of the other. A hook starts above aC2 configu-
ration and ends at the nextC2 configuration~including!. Fig-
ure 6 demonstrates a few such hooks. A full description
the structure is provided by the set of probabilities of hav
a hook of heighti , which we denote byq( i ). The calculation
of theq’s is straightforward using the steady stateP and the
evolution matrixE. We have to look at growth processes th
create C2 configurations~these are always side growth
which occur inside the ‘‘fjord’’!:

q~ i !5
1

12pup
(
j 5 i

`

Ej 2 i , j Pj , i 51, . . . ,̀ , ~4.8!

where 12pup is the normalization factor because it is th
average probability for a growth to occur inside the fjor
One can obtain an asymptotic approximation ofq( i ) for i
@1 by using the asymptotic approximation ofPj and using a
series expansion ofEj 2 i , j in terms ofe22k f j . By doing so,
one can carry out the sum in Eq.~4.8! and find out that

q~ i !5 x̃0E`11,̀
i @11 x̃1e2k f i1 x̃2e22k f i1O~e23k f i !#,

i>2, ~4.9!

with

x̃05
x0y~`!

~12pup!~12E`11,̀ e2k f !
50.6720,

x̃15x1

12E`11,̀ e2k f

12E`11,̀ e22k f
520.1567,

x̃25~x22b!
12E`11,̀ e2k f

12E`11,̀ e23k f
2150.9755. ~4.10!

For i 51 the above expression should be multiplied by 1
because only growths at the bottom of the fjord contribute
q(1). Thefirst eight probabilities are presented in Table
with an accuracy of 1024. They were evaluated using th
sum ~4.8! with very precise values ofPj , obtained by a
to

e
-
c-

f
g

t

.

,
o

high-order truncation. These predictions were verified us
a DLA computer simulation. In this simulation we lai
40 000 hooks. Each time a hook of heightj was formed, a
counter q̃( j ) was raised by one. Table III summarizes t
normalized results: The fluctuations are expected to be of
order of 1/A40 00050.005. In this respect the measureme
is in excellent agreement with the theory.

The q( j )’s give complete information about the froze
structure, so we can also derive the fractal dimensionD and
C2 in terms of theq( j )’s:

C25

(
j 51

`

jq~ j !
1

j

(
j 51

`

jq~ j !

5
1

(
j 51

`

jq~ j !

50.4680 . . . . ~4.11!

Equation~4.11! sums over the probabilities to have a ro
with two occupied sites at the end of hooks of heightj ~there
is just one such row in a hook, the height of which isj ). The
result in Eq.~4.11! is the same as in Eq.~4.4!, hence the
estimate of the fractal dimensionD gives the same result a
in Eq. ~4.5!.

Now that we have theq( j )8s we can also compute th
exact conditional probabilities for having one configurati
follow another in the growth direction, i.e., the FST matr
elementsMi , j . The conditional probability for having aC2
configuration above anotherC2 configuration is just the
probability for having a hook of height 1. Thus,M2,2
5q(1)50.5084. The conditional probability (P) for having
a C2 configuration above aC1 configuration,M1,2, can be
expressed as

M1,25
P~C1 at rowk andC2 at rowk11!

P~C1 at rowk!

5

(
j 52

`

jq~ j !
1

j

(
j 51

`

jq~ j !

1

C1
5

C2

C1
@12q~1!#50.4324.

~4.12!

These can be compared withM2,250.5056 and M1,2
50.4142 obtained by Pietronero’s direct evaluation in t
closed scheme~computed by summing up to two growths!
@10#.

Why does FST work so well? There are a few differenc
between our calculations and the ones performed in R
@10,12# using FST. First, FST uses a ceiling withM52,
instead ofM5` as is done here, but this seems to have
small effect on the growth probabilities~less than 1023 for



it
ac
sid

e
m
le

t
n
is

g
s

he
d
s

f
nt
o

th

h
e
a

le

y

i-
o

nt

.

LA
a

the
we
ary
s,

p

e of
by

ply

rom
dy
wth
ility
he
g a
-
al
he
ing
ne
er-

re-

the
ved.
nen-
nd
en-
-
ery
r re-
s,

e
e
a

A.
ra-

an-

us-
her

PRE 58 4727SOLUTION OF DIFFUSION LIMITED AGGREGATION . . .
h51). In any case, one can try to implement FST also w
M5` and thus remedy this small effect. Second, the f
that a relatively small number of growth processes is con
ered does not change the FST matrix considerably. This
fect could also be fixed by taking into account a larger nu
ber of growth processes. Third, in computing, for examp
the conditional probabilities of having aC2 ~or C1) row
above a givenC2 row, the fact that a fewC1 rows may exist
above the basisC2 row at the time of its formation is no
taken into account. This problem is inherent within FST a
cannot be fixed in its framework. However, this effect
found to be small because the probability for having twoC1
rows or more above aC2 row at the time of its formation is
very small~about 0.02). Moreover, the probability of havin
jC1 rows above aC2 row at the time of its formation decay
exponentially as a function ofj , with the small factor
E`11,̀ e2k f50.1516. Repeating the FST computation for t
case of a high ceilingM5`, as in our own scheme, an
accounting for as many as 30 growth processes, changeD
by 331024. This difference inD is smaller by an order o
magnitude from the differences in the FST matrix eleme
themselves, which reflect the robustness of the FST appr
mation.

C. Results for different values ofh

Niemeyer, Pietronero, and Wiesmann introduced
DBM with the parameterh appearing in Eq.~1.2!, also re-
ferred to as theh model@4,5#. Forh50, all possible growths
have identical probabilities, yielding a special version of t
Eden model, which does not allow growth inside clos
loops. This produces compact structures, i.e., the fractal
Euclidean dimensions are equal:D52 @in our modelD(h
50) is determined by the average density and thus is
than 2 because of the closed loops#. For h51 we get the
DLA model, which hasD'1.6, and forh5` we get a de-
terministic model, in which the strongest electric field alwa
wins, and therefore produces straight lines withD51. We
see that ash increases from zero to infinity, the fractal d
mensionD decreases from 2 to 1 continuously and mon
tonically. We can get exact results for any value ofh in the
same way that we got the exact results forh51. The only
difference is in the values of the evolution matrix eleme
Ei , j , which are now evaluated using Eqs.~3.3! and ~3.4!.
The steady state is then computed by solving Eqs.~3.14! and
~3.11!. pup, r, C2 , and D are evaluated using Eqs.~4.1!,
~4.2!, ~4.4!, and~1.5!, and the hook height distributionq( j )
is found using Eq.~4.8!. The solution is shown in Table IV
Note that the solution forh53 is shown with only three
significant digits. This is because the higher the value ofh,

TABLE IV. The fractal dimension for different values ofh — a
comparison of our approach to FST~calculated up to two growth
processes!. The convergence of the calculation goes likeE`11,̀

l ,
wherel is the order of truncation.

h 0 0.5 1 2 3 `

D 1.9144 1.7723 1.5538 1.2021 1.07 1
DFST 1.8990 1.7515 1.5418 1.1997 1
E`11,̀ 0 0.3128 0.5658 0.8547 0.96 1
h
t
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d
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e

e
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ss
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the slower is the convergence ofPj and q( j ). We used in
this case a truncation scheme withl 5100, and achieved an
accuracy of 0.01 forD.

V. SUMMARY

We presented a complete theoretical solution of the D
problem in a plane with periodic boundary conditions, with
period of 2. First we identified the possible shapes of
growing interface, as steps of varying heights. Then
solved the Laplace equation with the appropriate bound
conditions. The potential defined the growth probabilitie
which we inserted into the evolution matrixE. The matrix
elementEi , j was the conditional probability to go from a ste
of size j to a step of sizei in the next time step, by the
appropriate growth process. Next we presented the stat
the interface using an infinite vector, which we denoted
P(t). In this notation the dynamics of the system was sim
described by a transfer matrix, see Eq.~3.13!. This allowed
us to look for the steady state, which we also denoted byP.
We argued that this state was attractive so that starting f
any initial condition of the system we would reach the stea
state in an exponential way. The steady state and the gro
probabilities enabled us to calculate the average probab
for upward growths, which was inversely proportional to t
average density. We calculated the probability for havin
filled row, C2 , and the complementary probability for hav
ing a half filled row,C1 , and used these to obtain the fract
dimension,D51.5538. Our next step was to analyze t
geometry of the frozen structure. We identified it as be
composed of hooks of different heights, which were laid o
on top of the other. The frozen structure was fully charact
ized by the probabilitiesq( j ) of having a hook of heightj .
This concluded the solution of the problem. We also
peated the same procedure for different values ofh, in the
more general DBM model.

The solution we presented is analytical and exact, in
sense that any desired numerical accuracy can be achie
The steady-state vector was presented as a sum of expo
tially decaying contributions. It was thus possible to bou
the maximal error, with an expression that decays expon
tially with the order of approximation. A similar bound ap
plies to the computed fractal dimension. Our results are v
close to those obtained by the closed scheme FST. Ou
sults are in excellent agreement with DLA simulation
which we performed in the specified geometry~two sites
periodic boundary conditions!. The same approach can b
utilized for more complex geometries. Although it might b
difficult to obtain exact results, our method should yield
systematic scheme of approximations.
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APPENDIX: CONSTANT POTENTIAL BOUNDARY
CONDITIONS

Here we present the solution to the Laplace equation
ing constant potential boundary conditions at the top, rat
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than constant gradient. First, we show in~A1! that the gen-
eral derivation of Sec. II A also satisfies the constant pot
tial boundary conditions, forM→`. Then we show in~A2!
that using constant potential boundary conditions at finiteM
for N52 introduces negligible corrections to the grow
probabilities.

1. A derivation for a cylinder of arbitrary width
in two dimensions

We look again at a rectangle,M11 sites high andN sites
wide, with lateral periodicity. The basis functions~2.6!,
~2.7!, and ~2.8! are still applicable, because they solve t
Laplace equation regardless of the boundary condition
the top. The boundary conditions that we use at the top
time are

F~M ,n!5M1
1

N (
n850

N21

F~0,n8!5M1^ f &,

n50, . . . ,N21, ~A1!

where^ f & is defined by the equation. We used the const
potential to beM1^ f & for reasons of convenience, but w
could have used any other constant, e.g., 1, without chan
the growth probabilities. We use a slightly modified versi
of the definition ~2.11!, dF(m,n)[F(m,n)2m2^ f &.
dF(m,n) also solves the discrete Laplace equation, bu
obeys different boundary conditions. At the top it has ze
potential, and at the bottom it isF(m,n)2^ f & so that
^dF(0,n)&50. A set ofN21 linearly independent function
that have zero mean at the bottom obey the boundary co
tions at the top, and the discrete Laplace equation are

ŵ l5
sinh„k l~M2m!…

sinh~k lM !
eikln, l 51, . . . ,N21. ~A2!

We now bound the difference

uŵ l~m,n!2w l~m,n!u5Usinh„k l~M2m!…

sinh~k lM !
2e2k lmU

5
2e22k l M

12e22k l M
sinh~k lm!<

2e2k l M

12e22k l M
.

~A3!

This bound decays exponentially to zero asM→`. The
w l ’s l 51, . . . ,N21 form a set ofN21 functions that span
the space of solutions that satisfy the boundary conditi
~for M→`). This means that the solution will be identic
for both boundary conditions also atm51 and thus the
boundary Green functiongN(n) will be unchanged. Hence
the growth probabilities remain the same as in the cas
-

at
is

t

ng

it
o

di-

s

of

constant gradient upper boundary conditions. For finiteM
we can, once again, express the potential using a mod
Green function:

F~m,n!5m1 (
n850

N21

F~0,n8!GN,M~n8;m,n!, ~A4!

where

GN,M~n8;m,n!

[
1

NF11 (
l 51

N21
sinh„k l~M2m!…

sinh~k lM !
cos„kl~n2n8!…G ,

~A5!

gN,M~n![GN,M~0;1,n!

5
1

NF11 (
l 51

N21
sinh„k l~M21!…

sinh~k lM !
cos~kln!G .

~A6!

2. The case of finiteM for N52

Here we analyze the difference in growth probabiliti
due to the fact that a finiteM is used instead ofM→`. We
only make a comparison ofE`11,̀ for N52,

E`11,̀ 5
F~1,1!

F~1,1!12 (
m50

`

F~2m,0!

. ~A7!

We use expression~2.26! with a modified Green function
due to the finiteM :

F~1,1!511g2,M~1!y, ~A8!

wherey[F(0,0) is still to be determined. The potential
the infinite ‘‘fjord’’ is given by

F~m,0!5yek fm ~A9!

for m<0, as in Eq.~2.37! when taking the limit j→`.
Therefore,
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E`11,̀ 5
11g2,M~1!y

11g2,M~1!y1
2y

12e2k f

5F11
2

~12e2k f !@1/y1g2,M~1!#
G21

. ~A10!

The equation fory is

4y5F~1,0!1F~21,0!511@12g2,M~1!#y1e2k fy

⇒y5@32e2k f1g2,M~1!#21. ~A11!

We can now expressE`11,̀ in terms ofg2,M(1) only:

E`11,̀ 5F11
2

~12e2k f !@32e2k f12g2,M~1!#
G21

.

~A12!
ev
This is an analytic and smooth function ofg2,M(1), in the
region 0<g2,M(1)<1. As we show presently, the changes
g2,M(1) are exponentially small, and thus the changes
E`11,̀ will be small and proportional to the changes
g2,M(1). One canreadily see that the changes ing2,M(1) are
indeed small:

g2~1!2g2,M~1!5
12e2kmax

2
2

12
sinh„kmax~M21!…

sinh~kmaxM !

2

52e22kmaxM
sinh~kmax!

12e22kmaxM
. ~A13!

The difference inE`11,̀ is 3.431024 for M52 and 2.9
31027 for M54. It is reasonable to expect that the diffe
ence inE`11,̀ is typical of the changes to the rest of th
growth probabilities.
ys.
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